TiO2-Coated Carbon Nanotube-Silicon Solar Cells with Efficiency of 15%
نویسندگان
چکیده
Combining carbon nanotubes (CNTs), graphene or conducting polymers with conventional silicon wafers leads to promising solar cell architectures with rapidly improved power conversion efficiency until recently. Here, we report CNT-Si junction solar cells with efficiencies reaching 15% by coating a TiO₂ antireflection layer and doping CNTs with oxidative chemicals, under air mass (AM 1.5) illumination at a calibrated intensity of 100 mW/cm² and an active device area of 15 mm². The TiO₂ layer significantly inhibits light reflectance from the Si surface, resulting in much enhanced short-circuit current (by 30%) and external quantum efficiency. Our method is simple, well-controlled, and very effective in boosting the performance of CNT-Si solar cells.
منابع مشابه
High Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods
In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...
متن کاملSynthesis and Characterization of Anatase-coated Multiwall Carbon Nanotube for Improvement of Photocatalytic Activity
Sol-gel technique was used to coat multiwall carbon nanotubes (MWCNTs) with anatase titania to increasing the surface area and improve the photocatalytic activity of TiO2. Room temperature ballistic conduct of MWCNT combined with semiconducting behavior of anatase brought about a photocatalytic improvement of ~37 % with respect to the highest methyl orange decolorization flair. For characteriza...
متن کاملEffect of TiO2 nanotubes with TiCl4 treatment on the photoelectrode of dye-sensitized solar cells
In this study, we used the electrochemical anodization to prepare TiO2 nanotube arrays and applied them on the photoelectrode of dye-sensitized solar cells. In the field emission scanning electron microscopy analysis, the lengths of TiO2 nanotube arrays prepared by electrochemical anodization can be obtained with approximately 10 to 30 μm. After titanium tetrachloride (TiCl4) treatment, the wal...
متن کاملImproved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells†
Smooth and aligned single walled carbon nanotube (SWNT) thin films with improved optoelectronic performance are fabricated using a superacid slide casting method. Deposition of as made SWNT thin film on silicon (Si) together with post treatments result in SWNT/Si hybrid solar cells with unprecedented high fill factor of 73.8%, low ideality factor of 1.08 as well as overall dry cell power conver...
متن کاملNon-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells
A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC) films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2) based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012